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Coulomb-Like Interactions in the Dirac Equation

S. Bruce1

The Dirac equation for the Coulomb-like problem is modified by incorporating minimal
interactions into the Dirac Hamiltonian, that keep the 1/r potential dependence. We
determine the general energy eigenvalues and the corresponding eigenfunctions.

Let us consider a general quantum system described by canonical coordinates
Qi andPj satisfying the Heisenberg algebra (Bruceet al., 1996)

[Qi , Pj ] = i hIδi j , (1)

whereI ≡ In×n ⊗ I represents ann-block identity matrix, such that we may ex-
press these operators in the general form

Qi = η̂ ⊗ qi , Pj = η̂ ⊗ pj , (2)

where pj = −i h∂/∂qj . Here η̂ is a constantn× n hermitian matrix operator
satisfyinĝη2 = In×n. From Eq. (2) we can define alabel1 associated with each
representation of the Heisenberg algebra (1)

n ≥ 1(Qi , Pj ) ≡ |Tr( η̂ )| ≥ 0. (3)

Representations satisfying1 = n correspond to the usual ones (η̂ = In×n), where
Qi andPj are reducible operators forn ≥ 2.

The Hilbert space is defined asH = L2(R3)⊗ Cn. It consists ofn-component
column vectors where each componentψi is a complex valued function of the
four-dimensional (flat) space-time coordinatesq and t . The scalar product is
given by

(9,8) ≡
∫

V⊂R3

n∑
i=1

ψ∗i (q, t)φi (q, t) d3q. (4)

1 Physics Department, University of Concepcion, P.O. Box 160-C, Concepcion, Chile; e-mail:
sbruce@udec.cl.

1865

0020-7748/01/1000-1865$19.50/0C© 2001 Plenum Publishing Corporation



P1: vendor

International Journal of Theoretical Physics [ijtp] PP232-343691 September 7, 2001 10:19 Style file version Nov. 19th, 1999

1866 Bruce

The operatorQ consists of three self-adjoint operatorsQi whose domains are
defined as ∫

V⊂R3

(Qi9)†Qi9 d3q =
∫

V⊂R3

n∑
j=1

|qiψ j |2 d3q < ∞. (5)

The momentum operatorPj = −i ĥη ⊗ ∂/∂qj can be defined as the Fourier trans-
form of the position operatorQj ( j = 1, 2, 3).

Minimal interactions can now be introduced by means of the prescription
Pµ→ Pµ − gAµ, whereg is the coupling constant andAµ is a gauge field (µ =
0, 1, 2, 3). Note that hereP0 = i h In×n ⊗ ∂/∂q0. This is the basis for the so-called
gauge principlewhereby the form of the interaction is determined by local gauge
invariance. The covariant derivativeDµ ≡ (i /h)(Pµ − gAµ) turns out to be of
fundamental importance for determining the field strength tensor of the theory. It
will be the operator that generalizes electromagnetic-like interactions.

To be specific let us consider a Dirac free particle described by the hamiltonian

H9 = (cΣ · P+mc2β)9 = i h
∂9

∂t
, (6)

where

Pk ≡ γ5 pk = −i hγ5∇k, 6k = γ5αk =
(
σk 0

0 σk

)
, (7)

with

β =
(

I2×2 0

0 −I2×2

)
, γ5 =

(
0 I2×2

I2×2 0

)
. (8)

Thus we define

Q0 ≡ I4×4⊗ q0, Qi ≡ −γ5⊗ qi ,
(9)

P0 ≡ I4×4⊗ p0, Pj ≡ −γ5⊗ pj ,

wherepµ = i h∂/∂qµ and̂η = −γ5. Thus1 = 0, i.e.,n is an even integer andQi

and Pj are formally “traceless” operators. The operatorsQµ and Pν satisfy the
canonical commutation relations

[Qµ, Qν ] = [ Pµ, Pν ] = 0,
(10)

[Qµ, Pν ] = i hgµνI,

where I = I4×4⊗ I and diag(−1, 1, 1, 1) in the standard Dirac representation
(Itzykson and Zuber, 1980). Here the normalization condition is∫

R3

9†(q, t)9(q, t) d3q = 1. (11)
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A general interaction that keeps the 1/r dependence is introduced by means
of the simultaneous (minimal) replacements

(a) mc2→ mc2+ hcς

q
, (12)

(b) P0→ P0− 1

c

(−Ze2

q

)
, (13)

and

(c) P→ P− i
λ

c
βγ5

q̂
q

, (14)

where (a) is ascalarminimal interaction and (b) and (c) arevector-likeminimal
interactions. The wave equation for the interacting particle then becomes

H9(q, t) =
(

cΣ ·
(

P− i
λ

c
βγ5

q̂
q

)
+ β

(
mc2+ hcς

q

)
− Ze2

q

)
9(q, t)

= i h
∂

∂t
9(q, t). (15)

Before solving the eigenvalue problem associated with (15), we recall that the
operators

K̂ ≡ β(Σ · L̂ + h), Ĵ ≡ L̂ + h

2
Σ, (16)

with L̂ = q× q̂ the orbital angular momentum operator, are constants of
motion: [H, K̂ ] = 0̂, [H, Ĵ ] = 0̂. Following a standard procedure (Itzykson and
Zuber, 1980), the stationary states of energyE can be written as

9E(q, t) =
(
ψa(q, t)

ψb(q, t)

)
=
(
ψa(q)Y j j3la( q̂)

iψb(q)Y j j3lb( q̂)

)
exp

(
− i

h
Et

)
, (17)

whereY j j3l are the normalized total angular momentum functions, with

L̂ 2Y j j3l = h2l (l + 1)Y j j3l , Ĵ 2Y j j3l = h2 j ( j + 1)Y j j3l , K̂Y j j3l = hκY j j3l ,

(18)

where la = j ± 1/2 and lb = j ∓ 1/2 when κ = ±( j + 1/2). Thus the Dirac
equation is equivalent to the set of first-order (nonlinear) differential equations(

d

dq
+ (1− κ)

q

)
f =

((
mc2− E

hc
+ ς

q
− Zα

q

)
g− λ

q
f

)
,

(19)(
d

dq
+ (1+ κ)

q

)
g =

((
mc2+ E

hc
+ ς

q
+ Zα

q

)
f − λ

q
g

)
,
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where we have used the fact that

q̂ · σY j j3la(Ä) = −Y j j3lb (Ä), q̂ · σY j j3lb(Ä) = −Y j j3la (Ä). (20)

By setting

f (q) ≡ F(q)

q
, g(q) ≡ G(q)

q
, (21)

and

M1 = mc2+ E

hc
, M2 = mc2− E

hc
, (22)

r =
√

M1M2|q|, Zα = Z
e2

hc
, b =

√
M1M2, (23)

we find that

d F

dr
− κ F

r
=
(√

M1

M2
+ ς

r
− Zα

r

)
G− λ

r
F

and (24)

dG

dr
+ κG

r
=
(√

M2

M1
+ ς

r
+ Zα

r

)
F − λ

r
G.

Next we look for solutions in the form of series

G(r ) = exp(−r )r s
∑
µ=0

bµr µ, F(r ) = exp(−r )r s
∑
µ=0

aµr µ. (25)

From (24) and (25) we obtain the recursion relation

(s+ µ− κ + λ)aµ + (Zα − ς )bµ − aµ−1 =
√

M2

M1
bµ−1,

(26)

(s+ µ+ κ + λ)bµ − (Zα + ς )aµ − bµ−1 =
√

M1

M2
aµ−1.

Forµ = 0,

((s− κ)+ λ)a0+ (Zα − ς )b0 = 0

and (27)

((s+ κ)+ λ)b0− (Zα − ς )a0 = 0,

i.e.,

s2+ 2sλ+ (Zα)2(λ+ 1)− (ς2+ κ2) = 0. (28)
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Given thata0, b0 6= 0, from (28) we obtain

s= s± = −λ±
√
ς2+ κ2− Z2α2 > −1

2
. (29)

Choosingµ = n′ + 1 andan′+1 = bn′+1 = 0, to terminate the series, we have that
an′ = −bn′

√
M2/M1. Then from (26) we get

2
√

M1M2(s+ n′ + λ) = (M1− M2) Zα − (M1+ M2)ς, (30)

where

n ≡ n′ + |κ| = n′ + j + 1

2
(31)

is theprincipal quantum number. By defining

γ = Zα

s+ n− |κ| + λ , ξ = ς

s+ n− |κ| + λ , ε = E

mc2
, (32)

we solve forε:

1− ε2 = (εγ − ξ )2. (33)

The solutions are

ε± = 1

1+ γ 2

(
γ ξ ±

√
1+ γ 2− ξ2

)
> 0.

Note that for the point nucleus there exist bound solutions for

1+ γ 2− ξ2 > 0, (34)

or equivalently

(s+ n− |κ| + λ)2 > ς2− (Zα)2. (35)

Thus forε− we have the constraint

(γ ξ )2 > 1+ γ 2− ξ2 > 0. (36)

Explicitly we finally find the energy eigenvalues

E± = mc2(s+ n− |κ| + λ)2

(s+ n− |κ| + λ)2+ (Zα)2

×
(

Zας

(s+ n− |κ| + λ)2
±
√

1+
(

(Zα)2− ς2

(s+ n− |κ| + λ)2

))
.

It is worth mentioning here that the Dirac oscillator (Moshinsky and
Szczepaniak, 1989) can also be reobtained through a minimal interaction of the
form (14) in the Dirac equation. This is done by choosingAk(q) = iqkβγ5mω/e,
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whereω is the frequency for the oscillator. This gauge field gives rise to a harmonic
oscillator with a strong spin–orbit coupling that introduces, as in the previous case,
an infinite degeneracy. This oscillator has a hidden supersymmetry, responsible for
the special properties of its spectrum (Benitezet al., 1990). It is interesting to note
that the vector fieldAk in (14) is a Hermitian operator. This feature is absent in
Moshinski’s approach (Moshinsky and Szczepaniak, 1989).
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