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Coulomb-Like Interactions in the Dirac Equation

S. Brucé

The Dirac equation for the Coulomb-like problem is modified by incorporating minimal
interactions into the Dirac Hamiltonian, that keep the potential dependence. We
determine the general energy eigenvalues and the corresponding eigenfunctions.

Let us consider a general quantum system described by canonical coordinates
Qi and P; satisfying the Heisenberg algebra (Brutel., 1996)

[Qi, Pj] = ihIgj, 1)

wherel = |,,.n ® | represents an-block identity matrix, such that we may ex-
press these operators in the general form

Q=1®0, P =1®p, 2
where p; = —ihd/dq;. Here7 is a constanh x n hermitian matrix operator

satisfyingn? = lhxn. From Eq. (2) we can definelabel A associated with each
representation of the Heisenberg algebra (1)

n> A(Qi, Pj) = [Tr(y) = 0. ©))

Representations satisfying = n correspond to the usual ones £ 1), where
Qi andP; are reducible operators far> 2.

The Hilbert space is defined 26= L2(R%) ® C". It consists oh-component
column vectors where each componentis a complex valued function of the
four-dimensional (flat) space-time coordinatgsandt. The scalar product is
given by

n

(W, ®) = f v (@, 06 (q, 1) 6. @)
3 i=1
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The operatoiQ consists of three self-adjoint operatd@ whose domains are
defined as

n
f QW) Qwd’g = / Y laiyilPdq < oo 5)
VCR3 vers 171
The momentum operatd; = —i hy ® 9/9q; can be defined as the Fourier trans-

form of the position operata®;(j = 1, 2, 3).

Minimal interactions can now be introduced by means of the prescription
P, — P, —gA,, whereg is the coupling constant ardl, is a gauge field/ =
0, 1, 2, 3). Note that herBy = i hln«n ® 3/3q. This is the basis for the so-called
gauge principlevhereby the form of the interaction is determined by local gauge
invariance. The covariant derivatiie, = (i /h)(P, — gA,) turns out to be of
fundamental importance for determining the field strength tensor of the theory. It
will be the operator that generalizes electromagnetic-like interactions.

To be specific let us consider a Dirac free particle described by the hamiltonian

. 0w
HW:(CE'P—i—chﬁ)\I/:th, (6)
where
. Ok 0
P« = yspx = —ihysV, Tk = ysak = , (7
0 Ok
with

l2x2 0 0 Iy
p= < 0 _|2><2>, = <|2><2 0 ) ®

Thus we define
Qo=144a®%Pp, Qi=-y00,
Po = laxa ® po, Pi =—-ys® pj,

wherep, =ihd/dg* andij = —ys. ThusA = 0, i.e.,nis an even integer anQ;
and P; are formally “traceless” operators. The operatQs and P, satisfy the
canonical commutation relations

[qu QV] = [P/u Pv] =0,
[Q;u Pv] = ihg;wH-

wherel = 4.4 ® | and diag€1, 1, 1, 1) in the standard Dirac representation
(Itzykson and Zuber, 1980). Here the normalization condition is

fw(q, t)w(qg, t)d3q = 1. (11)

R3

(9)

(10)
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A general interaction that keeps thgrldependence is introduced by means
of the simultaneous (minimal) replacements

(@ mcé — mc+ hqﬁ (12)

(b) Po— Po—%(_i—ez) (13)
and

¢ PoP—ilpyd 14

© P—P-izpr, (14)

where (a) is ascalar minimal interaction and (b) and (c) avector-likeminimal
interactions. The wave equation for the interacting particle then becomes

_ AT hce 7€
HW¥(q,t) = (cE . (P— i E,Bysa> —|—ﬂ<mcz+ T) - T)\D(q,t)

.0
- mWy(q, t). (15)

Before solving the eigenvalue problem associated with (15), we recall that the
operators

K=gE-L+h), J=L+-%, (16)

with L :qAxa the orbital angular momentum operator, are constants of
motion: [H, K] =0, [H, J] = 0. Following a standard procedure (ltzykson and
Zuber, 1980), the stationary states of enelfggan be written as

’t y“.?;a q i
We(q.t) = (Vfa(q )) _ (IWa(q) ijal (i)) exp(—I—Et), 17)
vo(@. 1)) \ivn(@)Vijq, (@) h
where)/;;, are the normalized total angular momentum functions, with
T-Zyjj3l =hA( + 1)V, 32y1j3| =02j(j + DV, KDjjg = hedjjgs
(18)

wherel, = ] £1/2 andl, = j +1/2 whenk = +(j + 1/2). Thus the Dirac
equation is equivalent to the set of first-order (nonlinear) differential equations

G+ 55 = (- )e30)

q
d (1+K)> :<(mc2+E s E)f_ﬁ>
(dq+ q g hc +q+ q qg ’

(19)
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where we have used the fact that
G- 0Yjjg () = =Vijgly (), G- 0Vjj, () = —Vjjql, ().
By setting

F(a) G(q)
f(g) = —2, =
(a) q 9(a) a
and
mc + E mc — E
M, = M> =
! he ' 2 he
r =v/MiMglal, Za:Zr;ﬁC, b= /MM,
we find that
d—F_KEZ( My s_ﬂ)g_&F
dr M, ' r r r
and

46 (S (Mo g 2o _2g
dr r My r r r

Next we look for solutions in the form of series

G(r) =exp(r)r*y b,r*,  F(r)=expr)s) a,r”.

n=0 n=0

From (24) and (25) we obtain the recursion relation

M
(S+u—k—+2a, +(Za—c)b, —a, 1 = Wzbu_l,
1

M
(S+u+k+M)b, —(Za+¢)a, —b,_1 = /Wlau—b
2
Foru =0,
((s—«) +1)ag + (Za — g)bo = 0
and

((5+x) + A)bo — (Za — g)ag = 0,

$2+ 250 + (Za)> (A +1) — (¢ +«xH) =0.
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(23)

(24)

(25)

(26)

(27)

(28)
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Given thatay, by # 0, from (28) we obtain

1
s:si:—)\:t\/g2+/c2—22a2>—§. (29)

Choosingu = n’ + 1 anda, ;1 = by,1 = 0, to terminate the series, we have that
ay = —by/Mz/Ms. Then from (26) we get

2y MiMy(s+n" + 1) = (M1 — M2) Za — (M1 + My)g, (30)
where
/ / H 1
nsn+|;<|=n+]+§ (31)
is theprincipal quantum numbeBYy defining
Zo S E
=, =, = —F, 32
v s+n—|k|+ A § S+n—|k|+A T e (32)
we solve fore:
1—e?=(ey — €)% (33)

The solutions are

€1 1 (ré¢£V1+y2-£2)> 0.

T 1492
Note that for the point nucleus there exist bound solutions for
1+y*—§2>0, (34)
or equivalently
(s+n— k| +1)2> ¢?—(Za)? (35)

Thus fore_ we have the constraint
(y€)*> 1+y*—£> 0. (36)
Explicitly we finally find the energy eigenvalues

_ mZ(s+n—|k|+1)?
(s N — k| +A)2 4+ (Za)?

Zag (Za)? —¢?
. ((s+n— lic| +2)? * \/1+ ((S+n— |K|+A)2>>'

It is worth mentioning here that the Dirac oscillator (Moshinsky and
Szczepaniak, 1989) can also be reobtained through a minimal interaction of the
form (14) in the Dirac equation. This is done by chooskdq) = iqxB8ysmw/e,

Ei
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wherew is the frequency for the oscillator. This gauge field gives rise to a harmonic
oscillator with a strong spin—orbit coupling that introduces, as in the previous case,
an infinite degeneracy. This oscillator has a hidden supersymmetry, responsible for
the special properties of its spectrum (Benieal, 1990). It is interesting to note

that the vector fieldAx in (14) is a Hermitian operator. This feature is absent in
Moshinski's approach (Moshinsky and Szczepaniak, 1989).
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